Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3
Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3
Giải hệ pt 1/x+2y + y = -2 2/x + 2y -3y=1
1) giải pt \(x^4-2x^3+4x^2+2\sqrt{x^2-x}=6+3x\)
2) giải hệ pt\(\hept{\begin{cases}x^2+y^2-x-2y=19\\xy\left(x-1\right)\left(y-2\right)=-20\end{cases}}\)
Giải hệ pt:
\(\hept{\begin{cases}x\sqrt{x}+y\sqrt{y}=6\\x^2y+xy^2=20\end{cases}}\)
giải hệ pt
a. \(x^2+y=20vàx+y^2=20\)
b. 2x^2-y^2=1 và xy+x^2=2
c. xy+x+y=71 và x^2y+xy^2=880
giải hệ phương trình:\(\hept{\begin{cases}x^3-2y^3=x+4y\\6x^2-19xy+15y^2=1\end{cases}}\)
a) giải hệ pt: \(\hept{\begin{cases}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
b) giải hệ pt: \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\)
Giải hệ pt bậc nhất 2 ẩn
2x +3y -5z=33
X-y +2z=9
X+2y- 3z=20
Giải hệ PT sau:
\(\begin{cases} \dfrac{1}{2}x - y = 1\\ x - 2y = 2 \end{cases}\)
giải hệ pt \(\left\{{}\begin{matrix}\left(x+1\right)^3+y^2=xy+1+y\\2y^3=x+y+1\end{matrix}\right.\)