giải hệ:
\(\left\{{}\begin{matrix}x+2y=7\\x^2+y^2-2xy=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\x^2+y^2+164\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y+xy=-13\\x^2+y^2-x-y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=3\\x^3-y^3=7\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
\(6.\left\{{}\begin{matrix}x+2y=5\\3x-y=1\end{matrix}\right.\)
\(7.\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y-3\right)=xy-3\end{matrix}\right.\)
\(8.\left\{{}\begin{matrix}\dfrac{1}{x+1}-\dfrac{3}{y-1}=-1\\\dfrac{2}{x+1}+\dfrac{4}{y-1}=3\end{matrix}\right.\)
Giải hệ pt sau = phương pháp thế:
a, \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^2-x+y^2-2y=19\\xy\left(x-1\right)\left(2-y\right)=20\end{matrix}\right.\)
Giải hệ: \(\left\{{}\begin{matrix}x^2+y^2-xy=1\\x+ỹ^2=2y^3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x^2-y^2=1\left(1\right)\\xy+x^2=2\left(2\right)\end{matrix}\right.\)
giải hệ pt
Giải hệ bằng phương pháp phân tích nhân tử
a) \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)