giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích?
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\) b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\) c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}x^3-2y^3=x+4y\\6x^2-19xy+15y^2=1\end{cases}}\)
Giải hệ phương trình:
\(1,\hept{\begin{cases}x^2+5x+y=9\\3x^3+x^2y+2xy+6x^2=18\end{cases}}\)
\(2,\hept{\begin{cases}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{cases}}\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}5\left(x^2-2\right)=y^2-3y\\\left(6x+4y-1\right)\sqrt{x+y+1}=\left(2x+2y+1\right)\sqrt{3x+2y}\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}x+2y=8y^2+\sqrt{1-x^2}\\\sqrt{x^2-2x+4y+11}=1+\sqrt{x-4y+2}\end{cases}}\)
Giải hệ phương trình :
1, \(\hept{\begin{cases}x+y+z=3xy\\x^2+y^2+z^2=3xz\\x^3+y^3+z^3=3yz\end{cases}}\)
2,\(\hept{\begin{cases}x^3-y^3=9\\x^2+2y^2=x-4y\end{cases}}\)