Giải hệ phương trình
\(\hept{\begin{cases}x^3+4y=y^3+16x\\1+y^2=5\left(1+x^2\right)\end{cases}}\)
giải hệ phương trình sau
a, \(\hept{\begin{cases}\frac{x}{3}+\frac{y}{4}-2=0\\5x-y=11\end{cases}}\)b, \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y-10=0\end{cases}}\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH\(\hept{\begin{cases}x^2+3xy-3\left(x-y\right)=0\\x^4+9y\left(x^2+y\right)-5x^2=0\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x^3-y^3=9\\x^2-x+2y^2+4y=0\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}3x-4y=11\\5x-6y=20\end{cases}}\)
\(\hept{\begin{cases}\frac{2}{x}-\frac{3}{y}=1\\3x-3y=-2xy\end{cases}}\)
\(\hept{\begin{cases}2x-y=-3xy\\\frac{1}{x}+\frac{6}{y}=-1\end{cases}}\)
\(\hept{\begin{cases}\frac{3}{x+1}+\frac{1}{y+x-1}=2\\\frac{2}{x+1}-\frac{3}{y+x-1}=5\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}3\left(x^3-y^3\right)+20x^2+2xy+5y^2+39x=100\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x^3-12x-y^3+6y^2-16=0\\4x^2+2\sqrt{4-x^2}-5\sqrt{4y-y^2}+6=0\end{cases}}\)