Giải hệ phương trình:
a)\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{zx}{z+x}=\frac{24}{7}\end{cases}}\)
b)\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{cases}}\)
c)\(\hept{\begin{cases}\frac{xy}{x+y}=2-z\\\frac{yz}{y+z}=2-x\\\frac{zx}{z+x}=2-y\end{cases}}\)
giải hệ phương trình : \(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=6\\\frac{xy+yz+zx}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\sqrt{2}\end{cases}}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
giải hệ phương trình\(\hept{\begin{cases}x+xy+y=1\\y+yz+z=4\\z+zx+x=9\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\\\\\end{cases}x}+y+z=3\\
\sqrt{x}+\sqrt{y}+\sqrt{z}=xy+yz+zx\\
x,y,z>0\)
Giải hệ phương trình:
\(\hept{\begin{cases}xy+z^2=2\\yz+x^2=2\\zx+y^2=2\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{cases}}\)