\(\hept{\begin{cases}\frac{2}{2x-Y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-Y}-\frac{1}{x-2y}=\frac{1}{18}\end{cases}}\)
Giải hệ phương trình
Giải hệ phương trình
1) \(\hept{\begin{cases}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{cases}}\)
2) \(\hept{\begin{cases}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=1\\x+y+\frac{1}{x}+\frac{1}{y}=3\end{cases}}\)
Giải hệ phương trình :
a) \(\hept{\begin{cases}x^2+y^2=1\\x^9+y^9=1\end{cases}}\)
b)\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\frac{1}{3x+2y}+\frac{1}{3y+2z}+\frac{1}{3z+2x}=\frac{1}{x+2y+3z}+\frac{1}{y+2x+3x}+\frac{1}{z+2x+3y}\end{cases}}\)
Cần thầy cô, CTV, các hsg giải giúp em:
Giải các hệ phương trình sau:
1/ \(\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)
2/ \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
3/ \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
Giải hệ phương trình:
a) \(\hept{\begin{cases}x^3-x^2+x+1=2y\\y^3-y^2+y+1=2x\end{cases}}\)
b) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{1}{2}\\3xy-x-y=1\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH:
\(\hept{\begin{cases}\frac{6}{2x-3y}+\frac{2}{x+2y}=3\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{1}{2}\\3xy-1=x+y\end{cases}}\)