giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Giải hệ phương trình :
\(\hept{\begin{cases}\frac{5}{x+y-3}-\frac{2}{x-y+1}=8\\\frac{3}{x+y-3}+\frac{1}{x-y+1}=1,5\end{cases}}\)
Giải hệ phương trình:
a, \(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{xz}{x+z}=\frac{24}{7}\end{cases}}\)
b,\(\hept{\begin{cases}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x+\frac{1}{y}=3\\x^2+\frac{x}{y}+\frac{1}{y^2}=7\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{7}{5}\end{cases}}\)
giải hệ phương trình sau
\(\hept{\begin{cases}\frac{x}{x+1}+\frac{2}{y-2}=8\\\frac{3x}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
Giải hệ phương trình sau
\(\hept{\begin{cases}\frac{x+4}{x+3}-\frac{2}{y-1}=10\\\frac{x+6}{x+3}+\frac{1}{y-1}=7\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{x+1}{x-1}+\frac{3y}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{cases}}\)
giải hệ phương trình