Lời giải:
$a+b=0,16$
$\Leftrightarrow 100(a+b)=100.0,16$
$\Leftrightarrow 100a+100b=16$
Vậy pt (1) và (2) tương đương, nên hpt có nghiệm: $(a,b)=(m, 16-m)$ với $m$ là số thực bất kỳ.
Lời giải:
$a+b=0,16$
$\Leftrightarrow 100(a+b)=100.0,16$
$\Leftrightarrow 100a+100b=16$
Vậy pt (1) và (2) tương đương, nên hpt có nghiệm: $(a,b)=(m, 16-m)$ với $m$ là số thực bất kỳ.
Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ)
4 x − 5 y = 3 3 x − y = 16
Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ) 4 x - 5 y = 3 3 x - y = 16
cho hệ phương trình\(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
a) giải hệ phương trình khi m = 5
b) chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
c) định m để hệ có nghiệm (x ; y) = (1,4 ; 6,6)
d) với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
Cho phương trình bậc hai:x2-2mx+m-7=0 với m là tham số
a) Giải phương trình với m=-1
b) Tìm m để phương trình có 2 nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=16
Cho hệ phương trình: 3x-2y=4 (d1)
2x+y=5 (d2)
a) Giải hệ phương trình bằng phương pháp thế?
b) Giải hệ phương trình bằng phương pháp cộng đại số?
c) Vẽ (d1);(d2) trên cùng 1 mặt phẳng toạ độ. Xác định toạ độ giao điểm của d1 và d2
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
cho hệ phương trình : -2m+y=5 và mx+3y=1. a) giải hệ phương trình với m = -2 . b) tìm m để hệ phương trình có nghiêm duy nhất ( x;y ) dương
Cho phương trình bậc hai:x2-2mx+m-7=0 với m là tham số
a) Giải phương trình với m=-1
b) Tìm m để phương trình có 2 nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=16
Giải các hệ phương trình: 2 x - 3 2 y - 5 = 3 x + 1 3 y - 4 2 x - 3 - 3 y + 2 = - 16