a: A(1;-3); B(2;4); C(-1;2)
\(AB=\sqrt{\left(2-1\right)^2+\left(4+3\right)^2}=5\sqrt{2}\)
\(BC=\sqrt{\left(-1-2\right)^2+\left(2-4\right)^2}=\sqrt{13}\)
\(AC=\sqrt{\left(-1-1\right)^2+\left(2+3\right)^2}=\sqrt{29}\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+AC=5\sqrt{2}+\sqrt{13}+\sqrt{29}\)
Xét ΔABC có
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(=\dfrac{50+29-13}{2\cdot5\sqrt{2}\cdot\sqrt{29}}=\dfrac{33}{5\sqrt{58}}\)
\(sin^2A+cos^2A=1\)
=>\(sin^2A=1-\left(\dfrac{33}{5\sqrt{58}}\right)^2=\dfrac{361}{1450}\)
=>\(sinA=\sqrt{\dfrac{361}{1450}}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot\sqrt{\dfrac{361}{1450}\cdot50\cdot29}=\dfrac{19}{2}\)
b: Gọi (d): y=ax+b là phương trình đường thẳng AB
(d) đi qua A(1;-3) và B(2;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-3\\2a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a=-7\\a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-3-a=-3-7=-10\end{matrix}\right.\)
Vậy: (d): y=7x-10
c: Gọi (d1):y=ax+b là phương trình đường thẳng cần tìm
Vì (d1) vuông góc AB nên \(a\cdot7=-1\)
=>\(a=-\dfrac{1}{7}\)
=>(d1): \(y=-\dfrac{1}{7}x+b\)
Thay x=-1 và y=2 vào (d1), ta được:
\(b+\dfrac{1}{7}=2\)
=>\(b=2-\dfrac{1}{7}=\dfrac{13}{7}\)
Vậy: (d1): \(y=-\dfrac{1}{7}x+\dfrac{13}{7}\)