\(-x^2-5x+6=0\)
=>\(x^2+5x-6=0\)
=>\(x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{49}{4}=0\)
=>\(\left(x+\dfrac{5}{2}\right)^2-\dfrac{49}{4}=0\)
=>\(\left(x+\dfrac{5}{2}-\dfrac{7}{2}\right)\left(x+\dfrac{5}{2}+\dfrac{7}{2}\right)=0\)
=>(x-1)(x+6)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\)
\(-x^2+4x-7=0\)
=>\(x^2-4x+7=0\)
=>\(x^2-4x+4+3=0\)
=>\(\left(x-2\right)^2+3=0\)(vô lý)
=>Phương trình vô nghiệm
\(-x^2+2\sqrt{5}x-9=0\)
=>\(x^2-2\sqrt{5}x+5+4=0\)
=>\(\left(x-\sqrt{5}\right)^2+4=0\)(vô lý)
=>Phương trình vô nghiệm
\(-2x^2-5x+7=0\)
=>\(2x^2+5x-7=0\)
=>\(x^2+\dfrac{5}{2}x-\dfrac{7}{2}=0\)
=>\(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{81}{16}=0\)
=>\(\left(x+\dfrac{5}{4}\right)^2-\dfrac{81}{16}=0\)
=>\(\left(x+\dfrac{5}{4}-\dfrac{9}{4}\right)\left(x+\dfrac{5}{4}+\dfrac{9}{4}\right)=0\)
=>\(\left(x-1\right)\left(x+\dfrac{7}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)