Đề sai/ thiếu. Cho $a=0; b=1; c=2$ thì $a^3a^3+b^3b^3+c^3c^3=65$ còn $3abc=0$
Đề sai/ thiếu. Cho $a=0; b=1; c=2$ thì $a^3a^3+b^3b^3+c^3c^3=65$ còn $3abc=0$
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
Cho tam giác ABC có độ dài ba cạnh là a, b, c và chu vi bằng 3
Chứng minh rằng: \(3a^2+3b^2+3c^2+4abc\ge13\)
Giúp mình nha
Với a,b,c là các số thực thỏa mãn:
(3a+3b+3c)3=24+(3a+b-c)3+(3b+c-a)3+(3c+a-b)3
Chứng minh rằng (a+2b)(b+2c)(c+2a)=1
cmr: (a+2b-3c)^3+(b+2c-3a)^3+(c+2a-3b)^3=3.(a+2b-3c).(b+2c-3a).(c+2a-3b)
Cho a3+b3+c3=0. Chứng minh:\(a^3b^3+2b^3c^3+3b^3c^3+3a^3c^3\le0\)
\(\frac{a^3b-ab^3+b^3c-cb^3+c^3a-ca^3}{a^2b-ab^2+b^2c-cb^2+c^2a-ca^2}\)
. Rút gọn phân thức trên. Mình giải mãi cũng không ra. Mấy bạn giúp mình nha. Cảm ơn mấy bạn nè <3
với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3=24+(3a+b-c)^3+(3b+c-a)^3+(3c+a-b)^3
CMR : (1+2a)(1+2b)(1+2c)=1
mấy bạn ơi giải hộ mình bài này gấp nha, mà giải chi tiết một chút cho dễ hiểu nhé:
chứng minh : 1/(a+2b+3c)+1/(2a+3b+c)+1/(3a+b+2c)<3/16
biết a,b,c>0 và abc=ab+ac+bc
Cho a,b,c \(\in\)[0,1].Chứng minh
3+\(a^3b^2\)+\(b^3c^2\)+\(c^3a^2\)\(\ge\)2(\(a^3+b^3+c^3\))