Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm của tam giác. Chứng minh AH^2 +BC^2= 4R^2
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm, i là tâm đường tròn nội tiếp tam giác.
a) CM: AI là phân giác của góc OAH
b) cho góc ABC = 6o độ, CM: IO=IH
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Cho nửa đường tròn tâm (O) đường kính BC, A là một điểm thuộc nửa dduwwowngf tròn (A khác B,C). Từ A kẻ tiếp tuyến d với đường tròn tâm (O). Kẻ BH,CK cùng vuông góc với d (H,K thuộc d)
a)CM: đường tròn đường kính HK tiếp xúc BC
b) Xác định vị trí của điểm A trên nửa đường tròn để diện tích tứ giác BHKC có diện tích lớn nhất. Tính diện tích lớn nhất đó theo BC
c) Gọi M là tiếp điểm của BC với đường tròn đường kính HK.CM: khi M nằm giữa B và O thì \(\widehat{MAO}=\frac{\cot\widehat{ACB}-\cot\widehat{ABC}}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ dường tròn tâm O đường kính AH cắt AB, AC lần lược tại E và F.
a/ Chứng minh tứ giác AEHF là hình chữ nhật.
b/ Chứng minh AE.AB = AF.AC
c/ Gọi I và K lần lượt là trung điểm của BH và HC. Chứng minh IE, KF là tiếp tuyến của dường tròn (O).
d/ Chứng minh SEFKI = \(\frac{1}{2}\) SABC (SEFKI, SABC là diện tích tứ giác EFKI và tam giác ABC)