\(\left|x-5\right|=2x+3\) `(1)`
Nếu `x-5>=0<=>x>=5` thì phương trình `(1)` trở thành :
`x-5=2x+3`
`<=>x-2x=3+5`
`<=> -x=8`
`<=>x=-8` ( không thỏa mãn )
Nếu `x-5<0<=>x<5` thì phương trình `(1)` trở thành :
`-(x-5)=2x+3`
`<=> -x+5=2x+3`
`<=>-x-2x=3-5`
`<=> -3x=-2`
`<=>x=2/3` ( thỏa mãn )
Vậy pt đã cho có nghiệm `x=2/3`
__
\(\left|x+3\right|=3x-1\) `(1)`
Nếu `x+3>=0<=>x>=-3` vậy phương trình `(1)` trở thành :
`x+3=3x-1`
`<=> x-3x=-1-3`
`<=> -2x=-4`
`<=>x=2` ( thỏa mãn )
Nếu `x+3<0<=>x<-3` thì phương trình `(1)` trở thành :
`-(x+3)=3x-1`
`<=>-x-3=3x-1`
`<=>-x-3x=-1+3`
`<=>-4x=2`
`<=>x=-1/2` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=2`
__
`3-2x=4`
`<=> -2x=4-3`
`<=>-2x=1`
`<=>x=-1/2`
Vậy pt đã cho có nghiệm `x=-1/2`