b; \(\text{Δ}=1^2-4\cdot\left(-2\right)\cdot\left(-3\right)=1-4\cdot6=-23< 0\)
Do đó: Phương trình vô nghiệm
c: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot11=1+44=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-3\sqrt{5}}{-2}=\dfrac{3\sqrt{5}-1}{2}\\x_2=\dfrac{-3\sqrt{5}-1}{2}\end{matrix}\right.\)
a)\(x^2+2\sqrt{2}-6=0\)
\(\text{Δ}=b^2-4ac=\left(2\sqrt{2}\right)^2-4.1.\left(-6\right)=8-\left(-24\right)=8+24=32>0\)
\(\sqrt{\text{Δ}}=\sqrt{32}=4\sqrt{2}\)
Vậy PT có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\text{Δ}}}{2a}=\dfrac{-2\sqrt{2}+4\sqrt{2}}{2.1}=\dfrac{2\sqrt{2}\left(-1+2\right)}{2}=\sqrt{2}\)
\(x_2=\dfrac{-b-\sqrt{\text{Δ}}}{2a}=\dfrac{-2\sqrt{2}-4\sqrt{2}}{2.1}=\dfrac{2\sqrt{2}\left(-1-2\right)}{2}=-3\sqrt{2}\)
\(b\)) \(-2x^2+x-3=0\)
\(\text{Δ}=b^2-4ac=1^2-4.\left(-2\right).\left(-3\right)=1-24=-23< 0\)
Vậy PT vô nghiệm
\(c\)) \(-x^2+x+11=0\)
\(\text{Δ}=b^2-4ac=1^2-4.\left(-1\right).11=1-\left(-44\right)=1+44=45>0\)
\(\sqrt{\text{Δ}}=\sqrt{45}=3\sqrt{5}\)
Vậy PT có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\text{Δ}}}{2a}=\dfrac{-1+3\sqrt{5}}{2.\left(-1\right)}=\dfrac{1-3\sqrt{5}}{2}\)
\(x_2=\dfrac{-b-\sqrt{\text{Δ}}}{2a}=\dfrac{-1-3\sqrt{5}}{2.\left(-1\right)}=\dfrac{1+3\sqrt{5}}{2}\)
a, \(\Delta'=2-\left(-6\right)=8>0\)
vậy pt luôn có 2 nghiệm pb
\(x_1=-\sqrt{2}-2\sqrt{2};x_2=-\sqrt{2}+2\sqrt{2}\)
b, \(\Delta=1-4\left(-3\right)\left(-2\right)=1-16< 0\)
pt vô nghiệm
c, \(\Delta=1-4.11\left(-1\right)=1+44=45>0\)
pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-3\sqrt{5}}{-2};x_2=\dfrac{-1+3\sqrt{5}}{-2}\)