Giải các phương trình sau bằng cách biến đổi thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số :
a) \(x^2-6x+5=0\)
b) \(x^2-3x-7=0\)
c) \(3x^2-12x+1=0\)
d) \(3x^2-6x+5=0\)
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số :
a) \(x^2-3x+1=0\)
b) \(x^2+\sqrt{2}x-1=0\)
c) \(5x^2-7x+1=0\)
d) \(3x^2+2\sqrt{3}x-2=0\)
x² - 2(m - 2)x + m² - 5m - 4 = 0 (1) m là tham số a giải phương trình 1 với M = 1 b tìm tất cả các giá trị của tham số m để phương trình 1 có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 bình + X2 bình bằng -3 x1 x2 - 4
Biến đổi vế trái của mỗi phương trình sau về dạng tích rồi giải:
a) x2 + 4x - 5 = 0
b) x2 - 4x - 1 = 0
c) 4x2 + 24x + 9 = 0
Cho các phương trình :
a) x2 + 8x = -2; b) \(x^2+2x=\dfrac{1}{3}\)
Hãy cộng vào hai vế của mỗi phương trình trên cùng với một số thích hợp để được một phương trình mà vế trái thành một bình phương.
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
a) 5x2 + 2x = 4 - x; b) \(\dfrac{3}{5}x^2+2x-7=3x+\dfrac{1}{2};\)
c) \(2x^2+x-\sqrt{3}=\sqrt{3}x+1;\)
d) \(2x^2+m^2=2\left(m-1\right)x,\) m là một hằng số.
3. phương trình \(x^2+2\left(m-1\right)x-2m-3=0\)(m là tham số) . luôn có 2 nghiệm phân biệt x1,x2 thảo mãn (4x1+5)(4x2+5)+19=0
Cho phương trình x2 + ax +b =0 (1) với a,b là tham số nguyên. Giả sử pt(1) có một nghiệm là 2 - \(\sqrt{3}\) . Tìm a và b
Giải các phương trình :
a) \(7x^2-5x=0\)
b) \(-\sqrt{2}x^2+6x=0\)
c) \(3,4x^2+8,2x=0\)
d) \(-\dfrac{2}{5}x^2-\dfrac{7}{3}x=0\)