Lời giải:
Vì $\Delta'=(m-1)^2+2m+3=m^2+4>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2(m-1)\\ x_1x_2=-2m-3\end{matrix}\right.\)
Khi đó:
$(4x_1+5)(4x_2+5)+19=0$
$\Leftrightarrow 16x_1x_2+20(x_1+x_2)+44=0$
$\Leftrightarrow 4x_1x_2+5(x_1+x_2)+11=0$
$\Leftrightarrow 4(-2m-3)-10(m-1)+11=0$
$\Leftrightarrow m=\frac{1}{2}$ (chọn)