Lời giải:
$x^2+y^2+4xy+4y^2-2y=-1$
$\Leftrightarrow (x^2+4xy+4y^2)+(y^2-2y+1)=0$
$\Leftrightarrow (x+2y)^2+(y-1)^2=0$
Ta thấy $(x+2y)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì $(x+2y)^2=(y-1)^2=0$
$\Leftrightarrow y=1; x=-2$