Bài 14:
Gọi giao điểm của CB với AM là K
Xét (O) có
MA,MC là tiếp tuyến
Do đó: MA=MC
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BK tại C
=>ΔACK vuông tại C
\(\widehat{MAC}+\widehat{MKC}=90^0\)(ΔACK vuông tại C)
\(\widehat{MCA}+\widehat{MCK}=\widehat{ACK}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MKC}=\widehat{MCK}\)
=>MK=MC
mà MC=MA
nên MA=MK(1)
CH\(\perp\)AB
AK\(\perp\)AB
Do đó: CH//AK
Xét ΔBMA có IH//AM
nên \(\dfrac{IH}{AM}=\dfrac{BI}{BM}\left(2\right)\)
Xét ΔBKM có CI//KM
nên \(\dfrac{CI}{KM}=\dfrac{BI}{BM}\)(3)
Từ (1),(2),(3) suy ra CI=IH
=>I là trung điểm của CH