Gọi M; N lần lượt là giá trị nhỏ nhất, lớn nhất của hàm số y = ln ( x + x 2 + 4 ) trên đoạn [0;5] Khi đó tổng M+N là
A.
B.
C. .
D. Kết quả khác
Gọi M, N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 . Giá trị của biểu thức (M + 2N) là
A. 2 2 + 2
B. 4 - 2 2
C. 2 2 - 4
D. 2 2 - 2
Giá trị lớn nhất của hàm số sau trên khoảng (- ∞ ; + ∞ ) là:
y = 1 x 2 + x + 1
A. 1 B. 4/3
C. 5/3 D. 0
Tìm giá trị của tham số m để hàm số y nghịch biến trên từng khoảng xác định
y = - mx - 5 m + 4 x + m
A. m < 1 hoặc m > 4 B. 0 < m < 1
C. m > 4 D. 1 ≤ m ≤ 4
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x - 2 + 4 - x lần lượt là M và m. Chọn câu trả lời đúng.
A. M = 4, m = 2
B. M = 2, m = 0
C. M = 3, m = 2
D. M = 2, m = 2
Tìm m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn [-2; 1] đạt giá trị nhỏ nhất. Giá trị của m là
A. 4
B. 3
C. 1
D. 2
Tìm giá trị của tham số m để hàm số y nghịch biến trên từng khoảng xác định
A. m < 1 hoặc m > 4 B. 0 < m < 1
C. m > 4 D. 1 ≤ m ≤ 4
Tính tổng tất cả các giá trị của m biết đồ thị hàm số y = x 3 - 2 mx 2 + ( m + 2 ) x + 4 và đường thẳng y = x + 4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng 8 2 với I(1;3)
A.3
B. 8
C. 1
D. 5
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 Tính M – m.
A. M - m = 2 2
B. M - m = 2 2 + 2
C. M-n=4
D. M - n = 2 2 - 2