Phương pháp:
+) Tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
+) Sử dụng công thức tính diện tích tam giác
+) Sử dụng công thức tính độ dài
+) Áp dụng định lí Vi-ét tìm m
Chọn C.
Phương pháp:
+) Tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
+) Sử dụng công thức tính diện tích tam giác
+) Sử dụng công thức tính độ dài
+) Áp dụng định lí Vi-ét tìm m
Chọn C.
Tính tổng tất cả các giá trị của m biết đồ thị hàm số y= x 3 - 2 m x 2 + ( m + 3 ) x + 4 và đường thẳng y=x+4 cắt nhau tại 3 điểm phân biệt A(0;4), B, C sao cho diện tích tam giác IBC bằng 8 2 với I(1;3)
A.3
B. 8
C. 1
D. 5
Tìm tất cả các giá trị của m để đường thẳng d: y=x+4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + m + 3 x + 4 tại 3 điểm phân biệt A(0;4), B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3)
A. m = 2 m = 3
B. m = - 2 m = 3
C. m = 3
D. m = − 3 m = − 2
Cho hàm số: y = x3+2mx2+3(m-1)x+2 có đồ thị (C) . Đường thẳng d: y= - x+2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2); B và C. Với M(3;1) giá trị của tham số m để tam giác MBC có diện tích bằng 2 7 là
A. m=-1
B. m=-1 hoặc m=4
C. m=4
D. Không tồn tại m
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C) , đường thẳng (d): y=m(x+1) với m là tham số, đường thẳng ∆ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5 .
A. 0
B. 8
C. 5
D. 4
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y= - mx cắt đồ thị của hàm số y= x3- 3x2-m+ 2 tại ba điểm phân biệt A; B; C sao cho AB= BC.
A. m< 1
B. m> 2
C. m < 3
D. m> 4
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác ∆ O A B cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1.
D. -3.
Cho hàm số y = x + 1 x - 2 . Số các giá trị tham số m để đường thẳng y=x+m luôn cắt đồ thị hàm số tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên đường tròn x 2 + y 2 - 3 y = 4 là
A.1
B.0
C.3
D.2
Cho hàm số có đồ thị (C) y = 2 x + 1 x - 1 và đường thẳng d: y=x+m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C( -2; 5) , giá trị của tham số m để tam giác ABC đều là
A.m=1
B.m=1 hoặc m=5
C.m=5
D.m=-5