Cho hàm số f(x) có đạo hàm f'(x) liên tục trên đoạn [1;e] thỏa mãn f 1 = 1 2 và x . f ' x = x f 2 x - 3 f x + 1 x , ∀ x ∈ 1 ; e . Giá trị của f(e) bằng
A. 3 2 e
B. 4 3 e
C. 3 4 e
D. 2 3 e
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên R. Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. 3e
C. 20 e 2
D. - 1 e
Giá trị nhỏ nhất của hàm số y = x − 3 ln x trên đoạn 1 ; e bằng
A. 1.
B. 3 − 3 ln 3.
C. e.
D. e − 3.
Xác định giá trị a, b, c để hàm số F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của f ( x ) = ( x 2 - 3 x + 2 ) e - x
A. a = -1; b = 1; c = -1
B. a = -1; b = -5; c = -7
C. a = 1; b = -3; c = 2
D. a = 1; b = -1; c = 1
Cho hàm số f(x) xác định và có đạo hàm trên khoảng 0 ; + ∞ , đồng thời thỏa mãn điều kiện f 1 = 1 + e , f x = e 1 x + x . f ' x , ∀ x ∈ 0 ; + ∞ . Giá trị của f(2) bằng
A. 1 + 2 e
B. 1 + e
C. 2 + 2 e
D. 2 + e
Cho hàm số f(x) liên tục trên (1;e) thỏa mãn x f x − f 1 + ln x = x 2 + x − 2 − ln x . Biết rằng ∫ 2 e f x d x = a e 2 + b e + c với a , b , c ∈ Q . Tính giá trị của T = a + b + c.
A. T = 11 2 .
B. T = -4
C. T = − 5 2 .
D. T = 3
Biết hàm số f ( x ) = a 2 − 2 a + 2 ln x có giá trị lớn nhất trên đoạn e ; e 2 bằng 1. Khi đó tham số thực a có giá trị thuộc khoảng nào sau đây?
A. (0;2)
B. (1;3)
C. (-2;0)
D. (3;5)
Cho hàm số f(x) có đạo hàm liên tục trên [1;e] thỏa mãn f e = 0 , ∫ 1 e f ' x 2 d x = e - 2 và ∫ 1 e f x x d x = e - 2 . Tích phân ∫ 1 e f x d x bằng:
A. 2e
B. 3 - e 2 4
C. -2e
D. e 2 - 3 4
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a
Giá trị nhỏ nhất của hàm số f ( x ) = x + 4 x - 1 trên đoạn [-2;-1] bằng
A. -4.
B. -5.
C. -6.
D. -3.