ta có:6-|x+1| < 6
=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)
vậy....
ta có:6-|x+1| < 6
=>\(\frac{12}{6-\left|x+1\right|}\ge\frac{12}{6}=2=>D_{min}=2<=>x+1=0=>x=-1\)
vậy....
Gía trị nhỏ nhất của biểu thức D = \(\frac{12}{6-\left|x+1\right|}\)
Gía trị nhỏ nhất của biểu thức:
B=\(\frac{1}{2}\left(x-\frac{1}{2}\right)^2+\left|2x-1\right|-\frac{3}{2}\)
gia trị nhỏ nhất của biểu thức : D=\(\frac{12}{6-\left|x+1\right|}\)là .....?
1/ Gía trị lớn nhất của biểu thức:
A = x4 + x2 +4 /x4+ x2 +1
2/ Gía trị nhỏ nhất của biểu thức:
D = 12 /6-|x+1|
Gía trị lớn nhất của biểu thức A= \(\frac{6}{\left|x+1\right|+3}\)là
Gía trị nhỏ nhất của biểu thức A = \(\frac{-9}{\left|x\right|+3}\) là
a/Gía trị nhỏ nhất của biểu thức A= |3x+4|+|-12|-3
b/giá trị nhỏ nhất của biểu thức A= |x+2|+1/3.|3x+6|+|x-5|+|x-7|
Tìm gía trị nhỏ nhất của biểu thức: \(M=\left(3x-\frac{3}{4}\right)^4+\left|y+\frac{1}{2}\right|+2013\)3
cái cuối là cộng với 2013
Gía trị nhỏ nhất của biểu thức \(A=\left|\left(\left|x\right|+15\right)\right|-3\)