Ta có:
x2 + 15/x2 + 3 = x2 + 3/x2 + 3 + 12/x2 + 3 = 1 + 12/x2 + 3
Để biểu thức trên đạt GTLN thì 12/x2 + 3 đạt GTLN
=> x2 + 3 đạt GTNN
Mà x2 + 3 > hoặc = 3
Dấu "=" xảy ra khi và chỉ khi x = 0
=> GTLN của biểu thức: x2 + 15/x2 + 3 = 0 + 15/0 + 3 = 15/3 = 5
Đặt: \(M=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để M đạt GTLN thì \(x^2+3\) đạt giá trị nhỏ nhất.
Có: \(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu bằng xảy ra hi: \(x^2+3=3\Rightarrow x^2=0\Rightarrow x=0\)
Thay vào: \(M=1+\frac{12}{0^2+3}=1+\frac{12}{3}=1+4=5\)
Vậy: \(Max_M=5\) tại \(x=0\)