Vì \(\left|x-y+5\right|\ge0;\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-y+5\right|+\left|x-1\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y+5\right|=0\\\left|x-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y+5=0\\x-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=-5\\x=1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=6\end{cases}}}\)
Vậy x = 1; y = 6
|x-y+5|=0=>x-y+5=0
<=>|x-1|=0=>x-1=0
=>x=1
=>y=1-y+5=0=>1-y=-5=>y=-5-1=-6