Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Gia Huy

Giá trị của biểu thức: A= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+..........+1/(1+2+3+.......+99)+1/50

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1


Các câu hỏi tương tự
Bùi Trần Khánh Huyền
Xem chi tiết
Lan Anh Nguyễn
Xem chi tiết
Đặng Quốc Thắng
Xem chi tiết
Do Minh Duc
Xem chi tiết
AN
Xem chi tiết
madara
Xem chi tiết
Manh Ho xuan
Xem chi tiết
Quang tèo
Xem chi tiết
phạm bảo duy
Xem chi tiết