\(A=\frac{3-4a}{1+a^2}=\frac{-a^2-1+a^2-4a+4}{1+a^2}\)
\(=-1+\frac{a^2-4a+4}{1+a^2}=\frac{\left(a-2\right)^2}{1+a^2}\)
Để A nhỏ nhất thì cái phân số phải nhỏ nhất
Mà cái phân số có \(\hept{\begin{cases}\left(a-2\right)^2\ge0\\1+a^2>0\end{cases}}\)nên nhỏ nhất là 0 khi a = 2
Vậy GTNN của A = - 1 khi a = 2