Bài này làm phức tạp nên để khi khác làm
Bài này làm phức tạp nên để khi khác làm
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
Giả sử x ; y là các số dương thỏa mãn đẳng thức \(x+y=\sqrt{10}\). Tìm giá trị của x và y để biểu thức
\(P=\left(x^4+1\right)\left(y^4+1\right)\)đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất ấy.
giả sử x,y là số dương thõa mãn đẳng thức: \(x+y=\sqrt{10}\). Tìm gia trị của x và y để biểu thức: P=\(\left(x^4+1\right)\left(y^4+1\right)\)đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Giả sử x, y là các số dương thoả mãn đẳng thức: x + y = căn bậc 2 của 10
Tìm giá trị của x và y để biểu thức: P = (x4 + 1)(y4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
Giả sử x, y là các số dương thoả mãn đẳng thức: x + y = căn bậc 2 của 10
Tìm giá trị của x và y để biểu thức: P = (x4 + 1)(y4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
cho x;y là các số thực dương thỏa mãn \(x+y=\sqrt{10}.\)Tìm giá trị nhỏ nhất của biểu thức \(A=\left(x^4+1\right)\left(y^4+1\right)\)
Giả sử x, y, z là các số thực thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: \(M=x^4+y^4+z^4+12\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
Giả sử x, y là các số thực dương thỏa mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x^2}{y}+\frac{y^2}{x}\)