Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
Giả sử X = a/m , Y=b/m (a,b,m thuộc Z) và x<y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
HD: Sử dụng tính chất: Nếu a,b,c thuộc Z và a<b thì a+c<b+c
giả sử x=a/m,y=h/m (a,b,m thuộc Z , m>0) và x<y.hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y .
Hướng dẫn . sử dụng tinh chất : nếu a,b ,c thuộc z và a<b thì a+c<b+c
Gỉa sử x = a/m, y = b/m (a,b,m thuộc Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = a + b/2m thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a < b thì a + c < b + c
Giả sử x=a/m, y=b/m (a,b,m€Z,m>0) và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Hướng dẫn sử dụng tính chất nếu a,b,c €Z và a<b thì a+c<b+c.
Giả sử x = a/m; y = b/m (a,b,m Thuộc Z, m khác 0) và x<y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu a, b, c Thuộc Z và a < b thì a+c < b+c.
giả sử x = a/m , y= b/m ( a,b,c thuộc Z, m > 0 ) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
Giải giúp mình bài này với các bạn :
Giả sử x=\(\frac{a}{m}\)và y=\(\frac{b}{m}\)(a,b,m thuộc Z, m >0)và x<y. Hãy chứng tỏ rằng nếu chọn z =\(\frac{a+b}{2m}\)thì ta có x<z<y
Sử dụng tính chất : Nếu a, b, c thuộc Z và a<b thì a+c<b+c
Giả sử x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a,b,m thuộc Z, m > 0) và x < y . Hãy chứng tỏ rằng nếu chọn z = \(\frac{a+b}{2m}\) thì ta có x < z < y (Sử dụng tính chất : nếu a,b,c thuộc Z và a < b thì a+c < b+c
Giả sử x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (a,b,m thuộc Z ,m > 0) và x < y . Hãy chứng tỏ rằng nếu chọn z= \(\frac{a+b}{2m}\)thì ta có x<z<y
Hướng đẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a<b thì a+c<b+c