\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\Rightarrow Q=259.15-3=3882\)
(a+b+c)(1/a+b + 1/b+c + 1/a+c)=259.15
(a+b+c).(1/a+b) + (a+b+c).(1/b+c) + (a+b+c).(1/a+c)=259.15
a+b+c/a+b + a+b+c/b+c + a+b+c/a+c=259.15
(1 + c/a+b) + (1 + a/b+c) + (1 + b/a+c)=259.15
3+ (c/a+b + a/b+c + b/a+c)=259.15
c/a+b + a/b+c + b/a+c= 259.15-3
tự làm tiếp nhé