cho hình thang ABCD[AB//CD],M là trung điểm của CD . Gọi E là giao điểm của AC và BM ,F là giao điểm của BD và AM .Đường thẳng EF cắt BC và AD lần lượt tại G và H.
a>CMinh:EA/EC=2AB/CD
b>CMinh:EF//CD
c>CMinh:GE=EF=FH
Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF song song với AB.
b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh: HE = EF = FN.
Cho hình thang ABCD có hai đáy là AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh HE = EF = FN.
c) Biết AB = 7,5 cm, CD = 12 cm. Tính độ dài HN.
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
Cho hình thang ABCD (AB//CD) gọi M là trung điểm của CD . E là giao điểm của BD và AM , F là giao điểm của BM và AC a. C/M EF // AB b. Đường thẳng EF cắt AD,BC lần lượt tại H và N. C/M HE=EF=FN
Cho hình thang ABCD (AB//CD). Gọi E;F lần lượt là trung điểm của AD và BC. gọi G là giao điểm của EF và AC. Biết rằng AB = 6cm; CD=8cm.
a) tính EF
b) chứng minh G là trung điểm của AC, tính EG
Cho hình thang ABCD (AB//CD) , có AB=a ; CD= b và AB<CD. Gọi E, F lần lượt
là trung điểm của AD và BC.
a) Tính EF theo a và b.
b) Gọi G, H lần lượt là giao điểm của EF với các đoạn thẳng BD và AC. Chứng minh rằng G là
trung điểm của BD; H là trung điểm của AC.
c) Tính GH theo a, b .
d) Tìm điều kiện của a và b để EG=GH=HF
cho hình thang ABCD ( AB // CD ). một đường thẳng song song với AB lần lượt cắt các đoạn AD, BD, AC, BC tại M, N, P, Q
a) chứng minh rằng MN = PQ
b) gọi E là giao AD và BC , F là giao của AC và BD . CMR đường thẳng EF đi qua trung điểm AB và DC
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh đường thẳng EF đi qua trung điểm của AB và DC