\(\dfrac{3-x}{2020}+\dfrac{2026-x}{2023}=\dfrac{x+2018}{2021}\\ =>\dfrac{3-x}{2020}+\left(\dfrac{2026-x}{2023}-1\right)=\dfrac{x+2018}{2021}-1\\ =>\dfrac{3-x}{2020}+\dfrac{3-x}{2023}=\dfrac{x-3}{2021}\\ =>\dfrac{x-3}{2021}+\dfrac{x-3}{2020}+\dfrac{x-3}{2023}=0\\ =>\left(x-3\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2023}\right)=0\\ =>x-3=0\\ =>x=3\)