xy+yz+zx=670
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}giảipt\)
giải pt
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
Tìm nghiệm nguyên dương của phương trình \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
Tim nghiem nguyen duong cua pt:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
Tìm nghiệm nguyên dương
\(a,\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(b,5\left(xy+yz+zx\right)=4xyz\)
\(c,xyz=2\left(x+y+z\right)\)
\(d,\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=3\)
Cho x,y,z > 0 ; x + y + z = 1
CMR: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\le\frac{3}{2}\)
Giải phương trình nghiệm nguyên:\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=3\)
Giải hệ phương trình:
\(x+y+z=3\)
\(\frac{xy}{x^2+xy+y^2}+\frac{yz}{y^2+yz+z^2}+\frac{zx}{z^2+zx+x^2}=1\)
cho x+y+z=1. CMR \(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}< =\frac{3}{2}\)giúp mình với!!!!!!!!!