ĐK \(-\sqrt{5}\le x\le\sqrt{5}\)
PT \(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}=8\left(5-x^2\right).\)
Đặt \(\sqrt{5-x^2}=a\)thì PT trở thành \(x^3=8a^3\Rightarrow x=2a\) thay vào rồi giải
ĐK \(-\sqrt{5}\le x\le\sqrt{5}\)
PT \(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}=8\left(5-x^2\right).\)
Đặt \(\sqrt{5-x^2}=a\)thì PT trở thành \(x^3=8a^3\Rightarrow x=2a\) thay vào rồi giải
giải phương trình \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\)
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
giải các phương trình:
a)\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b)\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
c)\(\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
hệ phương trình (1)\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
phương trình (2) \(\frac{^{^{x^3}}}{\sqrt{5-x^2}}+8x^2=40\)
Giải phương trình: \(\frac{8x\left(1-x^2\right)}{\left(1+x^2\right)^2}-\frac{2\sqrt{2}x\left(x+3\right)}{1+x^2}=5-\sqrt{2}\)
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
Giải phương trình
a)\(x^2+3\sqrt{x^2-1}\) \(=\sqrt{x^4-x^2+1}\)
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)
Giải phương trình
\(\sqrt{5-x}+\sqrt{x-3}=\frac{2x^2}{8x-16}\)
Giải phương trình:
\(a,3\sqrt{x}+8=9x+\frac{1}{x}+\frac{1}{\sqrt{x}}\)
\(b,\frac{4x^2+8x+1}{2x+1}=5\sqrt{x}\)