GPT
a) \(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)(a là hằng)
b) \(\frac{2a-3b}{x-2a}+\frac{3b-2a}{x-3b}=0\)(a và b là hằng)
giải và biện luận phương trình :
\(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)
\(\frac{x}{x-a}-\frac{2a}{x+a}=\frac{8a^2}{x^2-a^2}\)
Rút gọn: \(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+\frac{a}{x^2+7ax+12a^2}+\frac{a}{x+4a}\)
1/ Tìm GTLN : -9a2+a+5
2/ Tìm GTNN : 2a2+2ab+b2+2a+5
3/ Tìm GTNN : \(\frac{2a^2+4a+1}{a^2}\)
4/ Cho x+y=1 ; x,y dương . Tìm GTNN : \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\)
Rút gọn : \(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+\frac{a}{x^2+7ax+12a^2}\)\(+\frac{a}{x+4a}\)
Quy đồng mẫu phân thức sau :
1.\(\frac{a-x}{6x^2-ax-2a^2};\frac{a+x}{3x^2+4ax-4a^2}\)
bài 9. Quy đồng mẫu thức sau;
B.1/x-2a; 8a^2/4a^2x-x^3; 1/x+2a
nhanh, đúng,chi tiết mk vote 5 sao
Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right)\div\frac{1}{6-4a}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên
c) Tìm a để P<0
d) Tìm P biết \(2a^2-a-3=0\)