\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
=\(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+.....+\frac{2}{99}-\frac{2}{101}\)
=\(2-\frac{2}{101}=\frac{202}{101}-\frac{2}{101}=\frac{200}{101}\)
=2/1-2/3+2/3-2/5+2/5-2/7+...+2/99-2/101
=2/1-2/101
=200/101