\(\dfrac{2-\sqrt{8}}{3-\sqrt{18}}=\dfrac{2\left(1-\sqrt{2}\right)}{3\left(1-\sqrt{2}\right)}=\dfrac{2}{3}\)
\(\dfrac{2-\sqrt{8}}{3-\sqrt{18}}=\dfrac{2\left(1-\sqrt{2}\right)}{3\left(1-\sqrt{2}\right)}=\dfrac{2}{3}\)
Thực hiện phép tính:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d)\(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Rút Gọn
a,\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
b,\(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
c,\(\left(\sqrt{12}+2\sqrt{27}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
d,\(\left(\sqrt{18}+\sqrt{0,5}-3\sqrt{\frac{1}{3}}\right)-\left(\sqrt{\frac{1}{8}-\sqrt{75}}\right)\)
e,\(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\)
f,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
g,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
h,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
i,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
j,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+7\right):\sqrt{7}\)
\(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)
Trục căn thức ở mẫu
Thực hiện phép tính: \(\left(3\sqrt{8}-6\sqrt{\frac{1}{2}}-2\sqrt{18}+3\sqrt{50}\right)\div\left(\frac{1}{2}\sqrt{24,5}-\sqrt{4,5}+\frac{3}{4}\sqrt{12,5}\right)\)
Rút gọn các biểu thức
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}} \)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(D=\frac{3\sqrt{8}-2\sqrt{12}+20}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(A=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(B=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(C=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(D=\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(E=\frac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Rút gọn
a)\(\frac{\sqrt{3}+\sqrt{27}}{2\sqrt{3}+\sqrt{18}}\) b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{2+\sqrt{2}+\sqrt{3}}\)
Rút gọn
\(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{40}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
M=\(\frac{1+ab}{a+b}-\frac{1-ab}{a-b}\)
với a=\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b=\(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Tính M