So sánh:
a, A= \(\frac{10^8+2}{10^8-1}\) ; B= \(\frac{10^8}{10^8-3}\)
b, A= \(\frac{8^{10}+1}{8^{10}-1}\) ; B=\(\frac{8^{10}-1}{8^{10}-3}\)
c, A= \(\frac{100^9+4}{100^9-1}\): B= \(\frac{100^9+1}{100^9-4}\)
Chứng minh rằng \(\frac{1}{3^1}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{90}}-\frac{1}{3^{100}}<\frac{3}{10}\)
So sánh hai phân số sau:
a)\(\frac{7}{15}và\frac{4}{9}\)
b)\(\frac{2001}{2002}và\frac{2000}{2001}\)
c)\(\left(\frac{1}{80}\right)^7và\left(\frac{1}{243}\right)^6\)
d)\(\left(\frac{3}{8}\right)^5và\left(\frac{5}{243}\right)^3\)
e) A=\(\frac{2011}{2012}+\frac{2012}{2013}\)Và B= \(\frac{2011+2012}{2012+2013}\)
f) \(C=\frac{20^{10}+1}{20^{10}-1}VàD=\frac{20^{10}-1}{20^{10}-3}\)
g) G =\(\frac{10^{100}+2}{10^{100}-1}\)Và H = \(\frac{10^8}{10^8-3}\)
h) E = \(\frac{98^{99}+1}{98^{89}+1}\) Và F =\(\frac{98^{98}+1}{98^{88}+1}\)
tìm x biết
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times....\times\frac{100}{99}+\frac{9}{110}\)
Bài 3:
So sánh A=\(\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^6}+\frac{1}{3^8}+...+\frac{1}{3^{2n+3}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)với \(\frac{1}{10}\)
\(A=\left(1\frac{1}{6}\times\frac{6}{7}\times6:\frac{3}{5}\right):\left(4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{10}\right)\)
\(B=1\frac{13}{15}\times25\%\times3+\left(\frac{8}{15}-\frac{79}{60}\right):1\frac{23}{4}\)
\(C=\frac{123}{4567}\times\frac{1}{8}+\frac{123}{4567}\times\frac{1}{2}-\frac{123}{4567}\times\frac{13}{8}\)
\(D=\frac{10\frac{1}{3}\times\left(24\frac{1}{2}-15\frac{6}{7}\right)-\frac{12}{11}\times\left(\frac{10}{3}-1,75\right)}{\left(\frac{5}{9}-0,25\right)\times\frac{60}{11}+194\frac{8}{99}}\)
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
Tính giá trị biểu thức
\(\frac{10-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-\frac{4}{12}-...-\frac{10}{18}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+\frac{1}{60}+...+\frac{1}{90}}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100}\)
Chứng minh \(\frac{1}{15}