\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{96}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{96}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{48}\)
=> 2x + 3 = 48
=> 2x = 48 - 3
=> 2x = 45
=> x = 45/2