Đặt A=VT ta có:
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{100}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{200}}=\frac{2^{200}-1}{2^{200}}\)
Thay A vào VT ta được:\(\frac{2^{200}-1}{2^{200}}x=\frac{2^{100}-1}{2^{100}}.100\)
=>x=100
Đặt S = 1/2+1/22+1/23+...+1/2100
=> 1/2.S= 1/4+1/23+1/24+...+1/2101
=> S - 1/2S = 1/2.S= (1/4+1/23+1/24+...+1/2101 )-(1/2+1/22+1/23+...+1/2100)
=> 1/2.S=(1/4+1/2101)-1/2
=> S= (1/4+1/2101)-1/2 : 1/2
rồi bây h thì oki
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
Thay A vào giả thiết của đề bài,ta được:
\(\left(1-\frac{1}{2^{100}}\right).x=\frac{2^{100-1}}{2^{100}}.100\)
\(\Rightarrow\left(\frac{2^{100}-1}{2^{100}}\right).x=\frac{2^{100}-1}{2^{100}}.100\)
\(\Rightarrow x=100\)
Đặt A=VT ta có:
$2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)$2A=2(12 +122 +...+12100 )
$2A=1+\frac{1}{2}+...+\frac{1}{2^{100}}$2A=1+12 +...+12100
$2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)$2A−A=(1+12 +...+12100 )−(12 +122 +...+12100 )
$A=1-\frac{1}{2^{200}}=\frac{2^{200}-1}{2^{200}}$A=1−12200 =2200−12200
Thay A vào VT ta được:$\frac{2^{200}-1}{2^{200}}x=\frac{2^{100}-1}{2^{100}}.100$2200−12200 x=2100−12100 .100
=>x=100
Thiên Ngoại Phi Tiên : ko làm đc thì xéo,đừng có copy
Đặt S = 1/2+1/22+1/23+...+1/2100
=> 1/2.S= 1/4+1/23+1/24+...+1/2101
=> S - 1/2S = 1/2.S= (1/4+1/23+1/24+...+1/2101 )-(1/2+1/22+1/23+...+1/2100)
=> 1/2.S=(1/4+1/2101)-1/2
=> S= (1/4+1/2101)-1/2 : 1/2