Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trí Linh

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+.....+50}\)

Xyz OLM
8 tháng 6 2019 lúc 15:10

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)

\(2\times(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51})\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(2\times\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(2\times\frac{49}{102}\)

\(\frac{49}{51}\)

A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +... + 1/1+2+3+...+50

A = 1/3 + 1/6 + 1/10 + 1/15 + ...+1/1275

Nhân cả hai vế với 1/2, ta có:

A/2 = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/2550

A/2 = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/50x51

A/2 = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +..... + 1/50 - 1/51

A/2 = 1-1/51

A/2 = 49/102

A = 49/51

Huỳnh Quang Sang
8 tháng 6 2019 lúc 15:12

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{2}{2(1+2)}+\frac{2}{2(1+2+3)}+\frac{2}{2(1+2+3+4)}+...+\frac{2}{2(1+2+3+...+50)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2\left[\frac{(1+50)\cdot50}{2}\right]}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2550}\)

\(=2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right]\)

\(=2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\right]\)

\(=2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right]\)

\(=2\left[\frac{1}{2}-\frac{1}{51}\right]=\frac{49}{51}\)

Nguyễn Công Phượng
8 tháng 6 2019 lúc 15:28

\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+\(\frac{1}{1+2+3+4}\)+....+\(\frac{1}{1+2+3+4+....+50}\)

B=\(\frac{1}{\left[1+2\right]\cdot2:2}\)+\(\frac{1}{\left[1+3\right]\cdot3:2}\)+\(\frac{1}{\left[1+4\right]\cdot4:2}\)+....+\(\frac{1}{\left[1+50\right]\cdot50:2}\)

B=\(\frac{1}{3\cdot2:2}\)+\(\frac{1}{4\cdot3:2}\)+\(\frac{1}{5\cdot4:2}\)+....+\(\frac{1}{51\cdot50:2}\)

B*\(\frac{1}{2}\)=\(\frac{1}{3\cdot2}\)+\(\frac{1}{4\cdot3}\)+\(\frac{1}{5\cdot4}\)+....+\(\frac{1}{51\cdot50}\)

B*\(\frac{1}{2}\)=\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{50}\)-\(\frac{1}{51}\)

B*\(\frac{1}{2}\)=\(\frac{1}{2}\)-\(\frac{1}{51}\)

B*\(\frac{1}{2}\)=\(\frac{49}{102}\)

B=\(\frac{49}{102}\):\(\frac{1}{2}\)

B=\(\frac{49}{51}\)

Dấu . là Dấu nhân

Nguyễn Vũ Minh Hiếu
8 tháng 6 2019 lúc 16:42

Đặt \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{50\times51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{50}-\frac{1}{50}\right)-\frac{1}{51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)

\(\Rightarrow A=\frac{49}{102}:\frac{1}{2}=\frac{49}{51}\)

~ Hok tốt ~


Các câu hỏi tương tự
Nhok_ vui
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Trần Phạm Phúc Nguyên
Xem chi tiết
Tiểu thư họ Đoàn
Xem chi tiết
phù thủy đanh đá
Xem chi tiết
Why Not Me
Xem chi tiết
phạm thị hồng vân
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
công chúa lấp lánh
Xem chi tiết