\(F=\left(\dfrac{x+2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\sqrt{x}-\dfrac{1}{2}\) (ĐK: \(x>0,x\ne1\))
\(F=\left(\dfrac{x+2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\sqrt{x}-\dfrac{1}{2}\)
\(F=\left(\dfrac{x+2-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\sqrt{x}-\dfrac{1}{2}\)
\(F=\left(\dfrac{x+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\sqrt{x}-\dfrac{1}{2}\)
\(F=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\sqrt{x}-\dfrac{1}{2}\)
\(F=\dfrac{x\sqrt{x}+x+\sqrt{x}+1+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\sqrt{x}-\dfrac{1}{2}\)
\(F=\dfrac{x\sqrt{x}+2x+1}{x-1}\cdot\dfrac{1}{\sqrt{x}}-\dfrac{1}{2}\)
\(F=\dfrac{x\sqrt{x}+2x+1}{\sqrt{x}\left(x-1\right)}-\dfrac{1}{2}\)
\(F=\dfrac{2\cdot\left(x\sqrt{x}+2x+1\right)-\sqrt{x}\left(x-1\right)}{2\sqrt{x}\left(x-1\right)}\)
\(F=\dfrac{2x\sqrt{x}+4x+2-x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(x-1\right)}\)
\(F=\dfrac{x\sqrt{x}+4x+\sqrt{x}+2}{2\sqrt{x}\left(x-1\right)}\)