Cho \(2\ge a\ge b\ge c\ge0\) và a + b + c = 3.
Chứng minh rằng \(a^2+b^2+c^2\le2a+b+3c\)
P/s: Đề này em chế từ Câu hỏi của Thảo Lê khi đang giải bài toán cũ nhưng giải ko ra nên chế cho nó ra bài mới:v
Cho:\(a\ge b\ge c\ge0.CMR:a^3b^2+b^3c^2+c^3a^2\ge a^2b^3+b^2c^3+c^2a^3\)
Cho a,b,c thoả mãn \(1\ge a,b,c\ge0\)
Chứng minh rằng \(a+b^2+c^3-ab-bc-ca\le1\)
Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).
Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)
Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:))
Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)
Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:
\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)
---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------
Cho a;b;c\(\ge0\).Chứng minh rằng \(\frac{a^3}{b\left(b+c\right)}+\frac{b^3}{c\left(c+a\right)}+\frac{c^3}{a\left(a+b\right)}\ge\frac{1}{2}\left(a+b+c\right)\)
cho a , b , c là các số thực dương . Chứng minh rằng :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
Đẳng thức xảy ra khi nào ?
nhờ các bạn nhé mik tick cho ^^
cho các số a,b,c,d tuý ý và \(a\ge b\ge c\ge d\ge0...\)
chứng minh 1) \(a^2-b^2+c^2\ge\left(a-b+c\right)^2...\)
2) \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2...\)
DẤU BẰNG XẢY RA KHI NÀO? (chú ý giải đầy đủ th dấu bằng xảy ra nha có liền 3 tick)
Chứng minh rằng \(^{\left(a+b\right)^2-4ab\ge0}\)với mọi a,b
Chứng minh rằng \(a^2+b^2+c^2-ab-bc-ca\ge0\)
Cho a,b,c>=0. Chứng minh:
\(\frac{a^2}{2b+3c}+\frac{b^2}{2c+3a}+\frac{c^2}{a^2+b^2}\ge\frac{1}{5}\left(a+b+c\right)\)