Ta có AC = AD + DC = AD + BD = 3,2 + 11,4 = 14,6 (cm).
Ta có AC = AD + DC = AD + BD = 3,2 + 11,4 = 14,6 (cm).
Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Hãy tìm: AD và CD nếu BD = 5cm; AC = 8cm
Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là:
A. 6cm
B. 4cm
C. 3cm
D. 5cm
Cho tam giác ABC vuông tại A, có góc ABC = 60*. Trên tia BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại E, cắt tia BA tại F.
a) Tính số đo góc ACB và so sánh độ dài các cạnh của tam giác ABC.
b) Chứng minh: BE là đường trung trực của đoạn thẳng AD và BE là tia phân giác của góc ABC.
c) Chúng minh: AD // FC.
d) Chứng minh: AC = 3DE.
cho tam giác ABC vuông tại A coa AB=AC=5cm đường phân giác BD(D thuộc AC ) . kẻ DH vuông góc với BC tại H .a) tính độ dài cạnh BC b) chứng minh tam giác ABD = tam giác HBD và BD là đường trung trực của AH c) trên cạnh AB lấy E sao cho AC=AD . đường vuông góc với BD kẻ từ E cắt BC ở G . chứng minh GH=HC
cho tam giác ABC .Lấy D thuộc cạnh AB,E thuộc cạnh AC sao cho BD=CE .Đường trung trực của đoạn thẳng BC cắt đường trung trực của đoạn thẳng DE tại điểm O.Chứng minh góc DAE=gócDOE
Cho tam giác ABC cân tại A. Các đường trung trực của AB và AC cắt nhau tại O. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho BD = CE. Chứng minh:
a) ∆ D O B = ∆ E O C ;
b) AO là đường trung trực của DE;
c) DE // BC.
Cho tam giác ABC cân tại A, trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC). Trên tia đối AD lấy E sao cho AE = BD. Chứng minh tam giác DCE cân
Cha tam giác ABC (AB<AC). Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho BD=CE. Các đường trung trực của BC và DE cắt nhau tại O. Chứng minh tam giác BOD = tam giác COE