Cho đường tròn tâm O, bán kính R, đường thẳng d không đi qua O và cắt đường tròn tai 2 điểm A và B. Từ một điểm C trên d (C nằm ngoài đường tròn) kẻ hai tiếp tuyến CM và CN với đường tròn ( M,N thuộc(O)). Gọi H là trung điểm AB, đường thẳng OH cắt tia CN tại K. a/ CM 5 điểm C,O,H,M,N thuộc cùng một đường tròn. b/ CM KN.KC=KH.KO c/ 1 đường thẳng đi qua O song song MN cắt các tia CM,CN lần lược tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH
Cho đường tròn tâm O bán kính 15 cm ,dây BC =24 cm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau tại A.
Tính khoảng cách OH từ O đến dây BC.C/m O,H,A thẳng hàng.Tính AB,AC.Gọi Mlà giao của AB và CO , N là giao của AC và BO. C/m BCNM là hình thang cân.Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Cho đường tròn (O;R) có dường kính BC, A là 1 điểm di động trên đường tròn. Vẽ Δ đều ABM có đỉnh M nằm ngoài đường tròn (O). Từ C vẽ CH vuông góc MB.
a) C/m: OM vuông góc AB
b) C/m: OM=CH
c) Gọi D, E, F, G theo thứ tự là trung điểm của OC, CM, MH, OH. C/m tứ giác DEFG là hình thoi.
Cho đường tròn (O) điểm A thuộc bán kính R, vẽ 2 dây AB; AC vuông góc vs nhau. Gọi M là trung điểm của AB, N là trung điểm của AC. Chwngsminh MN có độ dài ko đổi khi BÂC quay quanh điểm A
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Cho đoạn thẳng AB.Trên cùng một nửa mặt phẳng bờ chứa đoạn AB vẽ tia Ax và By vuông góc với AB.Điểm O nằm giữa A và B . M thuộc Ax, N thuộc By sao cho góc MON =90°.Kẻ OH vuông góc với MN.Chứng minh OH=OA