Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Giải thích cụ thể câu c cho mình.
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Cho hàm số y=x²-2-3x,đồ thị là parabol(P) a/Xác định tọa độ đỉnh,trục đối xứng.Lập bảng biến thiên và vẽ đồ thị b/gọi A là điểm thuộc(P) và có hoành độ bằng 5. Tìm phương trình đường thẳng (d) đi qua 2 điểm A,I
C1: Trên hệ trục tọa độ Oxy, có bao nhiêu giá trị nguyên của m e [-10;10] để phương trình 2 + y ^ 2 - 2(m + 1) x + 4y + 7m + 5 = 0 là phương trình đường tròn? A.11 B.16 C.15 D.12 Câu 11 Phương trình √ x^2 -2x+4=4-x có một nghiệm là A.x=2 B.x=4 C.x=3 D. X=4
Giúp vợi mọi người, mình cần gấp
bài 1. : Viết phương trình Parabol (P): y=x2 -bx +c khi biết: a)
(P) đi qua 3 điểm A(0;-1) , B(1;-1) và C(-1;1).
b) (P) đi qua điểm A(8;0) và có đỉnh I(6; 12)
bài 2. Viết phương trình Parabol (P) khi biết:
a) (P) đi qua 3 điểm A(1;0) , B(-1;6) và C(3;2).
b) (P) đi qua điểm A(2;3) và có đỉnh I(1, \(\frac{7}{2}\)) .
c) (P) đi qua điểm B(0;8) và có đỉnh I (3,-1).
d) (P) đi qua O(0;0) và có đỉnh I (3, \(\frac{-9}{2}\)) .
bài 3.Vẽ đồ thị và lập bảng biến thiên của hàm số
a) y= x2-2x
e) y= x2 -4x +4
f) y= -x2 -4x+1
g) \(y=\hept{\begin{cases}x^2-4x+5\left(x\ge1\right)\\x+1\left(x< 1\right)\end{cases}}\)
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.