Khi đồ thị hàm số y = x 3 - 3 m x + 2 có hai điểm cực trị A, B và đường tròn (C): ( x - 1 ) 2 + ( y - 1 ) 2 = 3 cắt đường thẳng AB tại hai điểm phân biệt M,N sao cho khoảng cách giữa M và N lớn nhất. Tính độ dài MN
A. MN= 3
B. MN=1.
C. MN=2.
D. MN=2 3
Đường thẳng d: y=x+m cắt đồ thị hàm số y = x - 1 x + 1 tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 = 2 , O là gốc tọa độ. Khi đó m thuộc khoảng
A. - ∞ ; 2 - 2 2
B. 0 ; 2 + 2 2
C. 2 + 2 ; 2 + 2 2
D. 2 + 2 2 ; + ∞
Biết rằng đồ thị hàm số y = 2 x 3 - 5 x 2 + 3 x + 2 chỉ cắt đường thẳng y = -3 x + 4 tại một điểm duy nhất M (a; b). Tổng a + b bằng
A. -6 .
B. -3
C. 6
D. 3.
Cho hàm số y = x - x + 1 có đồ thị, đường thẳng (d):y=mx-m-1 và điểm A(-1;0) Biết đường thẳng d cắt đồ thị tại hai điểm phân biệt M, N mà A M 2 + A N 2 đạt giá trị nhỏ nhất. Mệnh đề nào dưới đây đúng?
A. m ϵ [-1;0).
B. m ϵ [-∞;-2).
C. m ϵ [-2;-1).
D. m ϵ [-0;+∞).
Cho (C) là đồ thị của hàm số y = x - 2 x - 1 . Đường thẳng d : y = x + m cắt đồ thị (C) tại hai điểm A, B phân biệt và A B = 2 2 khi m nhận giá trị nào trong các giá trị nào sau đây?
A. m = 1
B. m = 5
C. m = -2
D. m = 8
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Cho hàm số y = 2 x - 1 x - 1 có đồ thị (C) và đường thẳng d : y = x + m . Tìm tất cả các tham số m dương để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt A,B sao cho A B = 10 .
A. m = 2 .
B. m =1.
C. m = 0.
D. m = 0 và m = 2 .
Tìm m để đường thẳng d : y = x - m cắt đồ thị hàm số C : y = x + 1 x - 1 tại hai điểm phân biệt A, B sao cho A B = 3 2
A. m = 2 và m = -2
B. m = 4 và m = -4
C. m = 1 và m = -1
D. m = 3 và m = -3
Cho hàm số y = 2 x − 3 x − 1 . Đồ thị hàm số cắt đường thẳng y = x + m tại 2 giao điểm khi
A. m ≥ 3 m ≤ − 1
B. m ≥ 3 m ≤ − 1
C. − 1 < m < 3
D. m > 7 m < 1