Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
3 x 2 + 14x + 8
Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
5 x 2 + 8x - 4
Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
x 2 - 11x + 30
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
3x2 + 8x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
2x2 - 5x + 3
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
Bài 1: Phân tích đa thức thành nhân tử :
a)_√3 - √3 + √15 - 2√5
b) x-5
c) x√x - 1
d)x√x +1