Đỗ Tuấn Đạt 1 phút trước - olm cho tam giác ABC vuông tại A có đg cao AH vẽ am an lần lượt là tpg của góc BAH và góc CAH Trên AB lấy D sao cho AD=AH a) CMR MD vuông góc với AB b) CMR BA =BN c) CMR MN =AB+AC-BC d) kẻ BK vuông AN tại K Ci vuông với Am tại I gọi o là giao điểm BK và Ci CMR tam giác CMI là tam giác vuông cân cứu mình với!!!!!!
a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN
d: ΔCAM cân tại C
mà CO là đường cao
nên CO là đường trung trực của AM
=>O nằm trên đường trung trực của AM
=>OA=OM(2)
Ta có: ΔBAN cân tại B
mà BO là đường cao
nên BO là đường trung trực của AN
=>O nằm trên đường trung trực của AN
=>OA=ON(1)
Từ (1),(2) suy ra OA=ON=OM
=>O là tâm đường tròn đường tròn ngoại tiếp ΔMAN
Ta có: \(\hat{CAM}=\hat{CAN}+\hat{MAN}\)
\(=90^0-\hat{BAN}+\hat{MAN}\)
mà \(\hat{CAM}=\hat{CMA}\)
nên \(\hat{CMA}=90^0-\hat{BAN}+\hat{MAN}\)
=>\(\hat{NMA}=90^0-\hat{BNA}+\hat{MAN}\)
=>\(\hat{NMA}+\hat{BNA}=90^0+\hat{MAN}\)
=>\(\hat{NMA}+\hat{MNA}=90^0+\hat{MAN}\)
Xét ΔMAN có \(\hat{NMA}+\hat{AMN}+\hat{MAN}=180^0\)
=>\(90^0+2\cdot\hat{MAN}=180^0\)
=>\(2\cdot\hat{MAN}=90^0\)
=>\(\hat{MAN}=45^0\)
Xét (O;OM) có \(\hat{MAN}\) là góc nội tiếp chắn cung MN
=>\(\hat{MON}=2\cdot\hat{MAN}=2\cdot45^0=90^0\)
Xét ΔMON có OM=ON và \(\hat{MON}=90^0\)
nên ΔMON vuông cân tại O