Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của A cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ).Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x = 0; x=2 có diện tích bằng
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Tìm a để diện tích hình phẳng giới hạn bởi đường cong y = 3 x đường thẳng x=1 đường thẳng x=a (a>1) bằng 3.
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 - 6 x + 9 và 2 đường thẳng x = 0; y = 0 Đường thẳng (d) có hệ số k và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
Diện tích hình phẳng giới hạn bởi đường cong y = a x (a>0), trục hoành và đường thẳng x=a bằng k a 2 , ( k ∈ ℝ ) . Tính giá trị của tham số k.
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Cho hàm số y = - 1 3 x 3 + a - 1 x 2 + a + 3 x - 4
Tính diện tích hình phẳng giới hạn bởi (C) và các đường thẳng y=0;x=-1;x=1
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . sin x và các đường thẳng x = 0, x = π, trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 , S 2 sao cho ( 2 S 1 + 2 S 2 - 1 ) = ( 2 S 1 - 1 ) 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Diện tích hình phẳng P giới hạn bởi các đường: y 1 = x, y 2 = 2x, y 3 = 2 - x bằng:
A. 1 B. 2/3
C. 2 D. 1/3