\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
= (√2 - √3 )2 + ( √3 + √2 )2
= 5 - 2√6 + 5 + 2√6
= 10
\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
= (√2 - √3 )2 + ( √3 + √2 )2
= 5 - 2√6 + 5 + 2√6
= 10
Cho abc=1
CM: \(\dfrac{\text{1}}{\text{a}^2+2b^2+3}=\dfrac{\text{1}}{b^2+2c^2+3}=\dfrac{\text{1}}{c^2+2a^2+3}\) ≤ \(\dfrac{\text{1}}{\text{2}}\)
\(a.\dfrac{4}{\text{√ }3+1}-\dfrac{5}{\text{√ }3-2}+\dfrac{6}{3-\text{√ }3}\)
b.√ 2x - √ 8x+\(\dfrac{1}{2}\text{√ }2x=2\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
\(\text{}\text{}\text{}\text{}\dfrac{2\left(4-2\sqrt{3}\right)-3\sqrt{4-2\sqrt{3}}-2}{\sqrt{4-2\sqrt{3}}-2}\)
\(\left(\dfrac{\text{√}x}{\text{√}x+2}+\dfrac{8\text{√}x+8}{x+2\text{√}x}-\dfrac{\text{√}x+2}{\text{√}x}\right):\left(\dfrac{x+\sqrt{x}+3}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)
a) rút gọn P
b)CMR: P≤1
Tìm x,
a, \(\dfrac{\text{√(2x-3)}}{\text{√(x-1)}}=2\)
b, \(\text{ }\sqrt{\dfrac{2x-3}{x-1}}=2\)
rút gọn biểu thức B = \(\dfrac{\text{20x - 11}}{\text{x - 2012}}.\dfrac{\text{x(x - 2)}}{\text{1982x}^{\text{2}}+30}-\dfrac{20x-11}{1982x^2+30}:\dfrac{x-2012}{x\left(x-3\right)+2012}\)
1. Rút gọn biểu thức A = \(\dfrac{\text{√ x + 1}}{\text{√ x − 1 }}-\dfrac{\text{√ x − 1}}{\text{√ x + 1}}+\dfrac{\text{8 √ x}}{\text{1 − x }}\)
2. Rút gọn biểu thức B = \(\dfrac{\text{√ x − x − 3}}{\text{x − 1 }}-\dfrac{\text{1}}{\text{√ x − 1 }}\) với x ≥ 0, x ≠ 1
cho : x=\(\sqrt{31-12\sqrt{3}}\). Tính P=\(\dfrac{\text{x}^4+5\text{x}^3-20\text{x}^2-27\text{x}+30}{\text{x}^2+4\text{x}-21}\)
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.